Design Patterns for Distributed
Non-Relational Databases

aka
Just Enough Distributed Systems To Be
Dangerous
(in 40 minutes)

Todd Lipcon
(@tlipcon)

Cloudera

June 11, 2009 ‘cloudera

Introduction
Common Underlying Assumptions

Design Patterns
Consistent Hashing
Consistency Models
Data Models
Storage Layouts
Log-Structured Merge Trees

Cluster Management
Omniscient Master
Gossip

Questions to Ask Presenters

‘Cloudera

Why We're All Here

» Scaling up doesn't work

» Scaling out with traditional RDBMSs isn't so
hot either

» Sharding scales, but you lose all the features that
make RDBMSs useful!

» Sharding is operationally obnoxious.

» If we don’t need relational features, we want a
distributed NRDBMS.

‘cloudera

Closed-source NRDBMSs

“The Inspiration”

» Google BigTable

» Applications: webtable, Reader, Maps, Blogger,
etc.

» Amazon Dynamo
» Shopping Cart, 7
» Yahoo! PNUTS
» Applications: 7

‘Cloudera

Data Interfaces
“This is the NOSQL meetup, right?”

v

Every row has a key (PK)

v

Key/value get/put

v

multiget /multiput

v

Range scan? With predicate pushdown?
MapReduce?
SQL?

v

v

‘Cloudera

Underlying Assumptions

‘cloudera

Assumptions - Data Size

» The data does not fit on one node.
» The data may not fit on one rack.
» SANSs are too expensive.

Conclusion:
The system must partition its data across many
nodes.

‘cloudera

Assumptions - Reliability

» The system must be highly available to serve
web (and other) applications.

» Since the system runs on many nodes, nodes
will crash during normal operation.

» Data must be safe even though disks and
nodes will fail.

Conclusion:
The system must replicate each row to multiple

nodes and remain available despite certain node and
disk failure. .
‘Cloudera

Assumptions - Performance

...and price thereof

» All systems we're talking about today are
meant for real-time use.

» 95th or 99th percentile is more important than
average latency

» Commodity hardware and slow disks.

Conclusion:
The system needs to perform well on commodity
hardware, and maintain low latency even during
recovery operations.

‘Cloudera

Design Patterns

‘cloudera

Partitioning Schemes

“Where does a key live?”

» Given a key, we need to determine which
node(s) it belongs on.

» If that node is down, we need to find another
copy elsewhere.
» Difficulties:

» Unbounded number of keys.
» Dynamic cluster membership.
» Node failures.

‘Cloudera

Consistent Hashing

Maintaining hashing in a dynamic cluster

B node A
B node B OO?OO
Bl node C '

f6ac9 1

node D

3283c

45a89

‘Cloudera

Consistent Hashing

Key Placement

B node A
B node B 9909 key "user:tlipcon"
B node C . md5(key) = 40b21

f6ac9
node D 00402

45a89

‘Cloudera

Consistency Models

» A consistency model determines rules for

visibility and apparent order of updates.
» Example:

» Row X is replicated on nodes M and N

Client A writes row X to node N
Some period of time t elapses.
Client B reads row X from node M
Does client B see the write from client A?

vV vV v VY

» Consistency is a continuum with tradeoffs

‘cloudera

Strict Consistency

» All read operations must return the data from
the latest completed write operation, regardless
of which replica the operations went to

» Implies either:

» All operations for a given row go to the same node
(replication for availability)

» or nodes employ some kind of distributed
transaction protocol (eg 2 Phase Commit or Paxos)

» CAP Theorem: Strict Consistency can't be
achieved at the same time as availability and
partition-tolerance.

‘cloudera

Eventual Consistency

v

v

v

\4

As t — o0, readers will see writes.

In a steady state, the system is guaranteed to
eventually return the last written value

For example: DNS, or MySQL Slave
Replication (log shipping)
Special cases of eventual consistency:

>

Read-your-own-writes consistency (“sent mail”
box)

Causal consistency (if you write Y after reading X,
anyone who reads Y sees X)

gmail has RYOW but not causal!

‘cloudera

Timestamps and Vector Clocks

Determining a history of a row

» Eventual consistency relies on deciding what
value a row will eventually converge to

» In the case of two writers writing at “the
same” time, this is difficult

» Timestamps are one solution, but rely on
synchronized clocks and don't capture causality

» Vector clocks are an alternative method of
capturing order in a distributed system

‘cloudera

Vector Clocks

» Definition:

» A vector clock is a tuple {ty, tp, ..., t,} of clock
values from each node
v < w if:
» Forall i, vi; < vy,
> For at least one i, vi; < vy;

» v; < v implies global time ordering of events

» When data is written from node /, it sets t; to
its clock value.

» This allows eventual consistency to resolve
consistency between writes on multiple replicas.

‘cloudera

Data Models

What's in a row?

» Primary Key — Value
» Value could be:

» Blob

» Structured (set of columns)

» Semi-structured (set of column families with
arbitrary columns, eg linkto:<url> in webtable)

» Each has advantages and disadvantages

» Secondary Indexes? Tables/namespaces?

‘cloudera

Multi-Version Storage

Using Timestamps for a 3rd dimension

» Each table cell has a timestamp

» Timestamps don't necessarily need to
correspond to real life

» Multiple versions (and tombstones) can exist
concurrently for a given row

» Reads may return “most recent”, “most recent
before T", etc. (free snapshots)

» System may provide optimistic concurrency
control with compare-and-swap on timestamps

‘cloudera

Storage Layouts

How do we lay out rows and columns on disk?

Determines performance of different access
patterns

Storage layout maps directly to disk access
patterns

Fast writes? Fast reads? Fast scans?
Whole-row access or subsets of columns?

v

v

v

v

‘Cloudera

Row-based Storage

Record 1

— ~—

Record 3

» Pros:

» Good locality of access (on disk and in cache) of
different columns
» Read/write of a single row is a single 10 operation.

» Cons:
» But if you want to scan only one column, you still

d all.
read @ ‘cloudera

Columnar Storage

Column A

Column C

» Pros:
» Data for a given column is stored sequentially
» Scanning a single column (eg aggregate queries) is
fast
» Cons:
» Reading a single row may seek once per column.

‘Cloudera

Columnar Storage with Locality Groups

Column A = Group A

Column Family {B,C}

» Columns are organized into families (“locality
groups”)
» Benefits of row-based layout within a group.

» Benefits of column-based - don't have to read

groups you don’t care about. .
‘cloudera

Log Structured Merge Trees

aka “The BigTable model”

» Random 10 for writes is bad (and impossible in
some DFSs)

» LSM Trees convert random writes to sequential
writes

» Writes go to a commit log and in-memory
storage (Memtable)

» The Memtable is occasionally flushed to disk

(SSTable)

» The disk stores are periodically compacted

P. E. O'Neil, E. Cheng, D. Gawlick, and E. J. O'Neil. The log-structured merge-tree
(4
(LSM-tree). Acta Informatica. 1996. 'CIOUdEfa

LSM Data Layout

Memory

Disk
SSTable 3
SSTable 2
SSTable 1

‘Cloudera

LSM Write Path

Write Path

Memory

Memtable |«
Disk

Commit Log

SSTable 3

SSTable 2

SSTable 1

‘cloudera

LSM Read Path

Memory
Memtable
Disk
Commit Log
SSTable 3
SSTable 2
SSTable 1

Client

merge

> o

—/

‘cloudera

LSM Read Path + Blo

om Filters

Client

merge

> o

Memory
Memtable
Disk
Commit Log
SSTable 3
SSTable 2
SSTable 1

-

‘cloudera

LSM Memtable Flush

Memory Memory
Memtable Memtable'
Disk Disk
Commit Log Commit Log'
SSTable 3 N SSTable 4
SSTable 2 SSTable 3
SSTable 1 SSTable 2
| SSTable 1 |

‘cloudera

LSM Compaction

Memory Memory
Memtable]——{Memtable |
Disk Disk
SSTable 3
SSTable 2 \
SSTable 1 A »SSTable 1'

‘cloudera

Cluster Management

» Clients need to know where to find data
(consistent hashing tokens, etc)

» Internal nodes may need to find each other as
well

» Since nodes may fail and recover, a
configuration file doesn’t really suffice

» We need a way of keeping some kind of
consistent view of the cluster state

‘cloudera

Omniscient Master

» When nodes join/leave or change state, they
talk to a master

» That master holds the authoritative view of the
world

» Pros: simplicity, single consistent view of the
cluster

» Cons: potential SPOF unless master is made
highly available. Not partition-tolerant.

‘cloudera

Gossip

» Gossip is one method to propagate a view of
cluster status.

» Every t seconds, on each node:
» The node selects some other node to chat with.
» The node reconciles its view of the cluster with its
gossip buddy.
» Each node maintains a “timestamp” for itself and
for the most recent information it has from every
other node.

» Information about cluster state spreads in
O(lgn) rounds (eventual consistency)

» Scalable and no SPOF, but state is only

eventually consistent
4 ‘cloudera

Gossip - Initial State

‘Cloudera

Gossip - Round 1

O O
.\O
O @

O O

‘Cloudera

Gossip - Round 2
/)
O
O /
O

‘Cloudera

Gossip - Round 3

‘Cloudera

Gossip - Round 4

S

‘Cloudera

Questions to Ask Presenters

‘cloudera

Scalability and Reliability

» What are the scaling bottlenecks? How does it
react when overloaded?

» Are there any single points of failure?

» When nodes fail, does the system maintain
availability of all data?

» Does the system automatically re-replicate
when replicas are lost?

» When new nodes are added, does the system
automatically rebalance data?

‘cloudera

Performance

» What's the goal? Batch throughput or request
latency?

» How many seeks for reads? For writes? How
many net RTTs?

» What 99th percentile latencies have been
measured in practice?

» How do failures impact serving latencies?

» What throughput has been measured in
practice for bulk loads?

‘cloudera

Consistency

» What consistency model does the system
provide?

» What situations would cause a lapse of
consistency, if any?

» Can consistency semantics be tweaked by
configuration settings?

» Is there a way to do compare-and-swap on row
contents for optimistic locking? Multirow?

‘cloudera

Cluster Management and Topology

» Does the system have a single master? Does it
use gossip to spread cluster management data?

» Can it withstand network partitions and still
provide some level of service?

» Can it be deployed across multiple datacenters
for disaster recovery?

» Can nodes be commissioned /decomissioned
automatically without downtime?

» Operational hooks for monitoring and metrics?

‘cloudera

Data Model and Storage

» What data model and storage system does the
system provide?
» Is it pluggable?

» What 10 patterns does the system cause under
different workloads?

» Is the system best at random or sequential
access? For read-mostly or write-mostly?

» Are there practical limits on key, value, or row
sizes?

» Is compression available?

‘cloudera

Data Access Methods

» What methods exist for accessing data? Can |
access it from language X7

» |Is there a way to perform filtering or selection
at the server side?

» Are there bulk load tools to get data in/out
efficiently?

» Is there a provision for data backup/restore?

‘cloudera

Real Life Considerations

(I was talking about fake life in the first 45 slides)

>

Who uses this system? How big are the
clusters it's deployed on, and what kind of load
do they handle?

Who develops this system? Is this a community
project or run by a single organization? Are
outside contributions regularly accepted?

Who supports this system? Is there an active

community who will help me deploy it and
debug issues? Docs?

What is the open source license?

What is the devel t roadmap?
at is the development roadmap ‘cloudera

Questions?

http://cloudera-todd.s3.amazonaws.com /nosql.pdf

‘cloudera

	Outline
	Introduction
	Common Underlying Assumptions
	Design Patterns
	Consistent Hashing
	Consistency Models
	Data Models
	Storage Layouts
	Log-Structured Merge Trees

	Cluster Management
	Omniscient Master
	Gossip

	Questions to Ask Presenters

